Pattern formation in the Drosophila eye disc.

نویسندگان

  • Jean-Yves Roignant
  • Jessica E Treisman
چکیده

Differentiation of the Drosophila compound eye from the eye imaginal disc is a progressive process: columns of cells successively differentiate in a posterior to anterior sequence, clusters of cells form at regularly spaced intervals within each column, and individual photoreceptors differentiate in a defined order within each cluster. The progression of differentiation across the eye disc is driven by a positive autoregulatory loop of expression of the secreted molecule Hedgehog, which is temporally delayed by the intercalation of a second signal, Spitz. Hedgehog refines the spatial position at which each column initiates its differentiation by inducing secondary signals that act over different ranges to control the expression of positive and negative regulators. The position of clusters within each column is controlled by secreted inhibitory signals from clusters in the preceding column, and a single founder neuron, R8, is singled out within each cluster by Notch-mediated lateral inhibition. R8 then sequentially recruits surrounding cells to differentiate by producing a short-range signal, Spitz, which induces a secondary short-range signal, Delta. Intrinsic transcription factors act in combination with these two signals to produce cell-type diversity within the ommatidium. The Hedgehog and Spitz signals are transported along the photoreceptor axons and reused within the brain as long-range and local cues to trigger the differentiation and assembly of target neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Drosophila eye development by decapentaplegic.

The Drosophila decapentaplegic (dpp) gene, encoding a secreted protein of the transforming growth factor-beta (TGF-beta) superfamily, controls proliferation and patterning in diverse tissues, including the eye imaginal disc. Pattern formation in this tissue is initiated at the posterior edge and moves anteriorly as a wave; the front of this wave is called the morphogenetic furrow (MF). Dpp is r...

متن کامل

The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development.

The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), De...

متن کامل

The molecular mechanisms controlling cell-fate determination and movement of the morphogenetic furrow in the eye

The adult epidermis in higher dipteran insects such as Drosophila is derived from specialized structures in larvae known as imaginal discs. Set aside during mid-embryogenesis as small groups of 10 to 70 cells each, imaginal disc primordia grow and differentiate during larval development as epithelial monolayers. Metamorphosis of imaginal discs during early pupal life generates the adult cuticle...

متن کامل

Bar Represses dPax2 and Decapentaplegic to Regulate Cell Fate and Morphogenetic Cell Death in Drosophila Eye

The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number...

متن کامل

5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila

5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation...

متن کامل

Lumenal transmission of decapentaplegic in Drosophila imaginal discs.

Drosophila imaginal discs are sac-like appendage primordia comprising apposed peripodial and columnar cell layers. Cell survival in disc columnar epithelia requires the secreted signal Decapentaplegic (DPP), which also acts as a gradient morphogen during pattern formation. The distribution mechanism by which secreted DPP mediates global cell survival and graded patterning is poorly understood. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of developmental biology

دوره 53 5-6  شماره 

صفحات  -

تاریخ انتشار 2009